STAŁE FIZYCZNE (POMIAR Z ROKU 2011), SZKOŁA, FIZYKA

[ Pobierz całość w formacie PDF ]
1. Physical constants
1
Tab l e 1 . 1 .
Reviewed 2007 by P.J. Mohr and B.N. Taylor (NIST). Based mainly on the “CODATA Recommended Values of the Fundamental
Physical Constants: 2006” by P.J. Mohr, B.N. Taylor, and D.B. Newell (to be published). The last group of constants (beginning with the Fermi
coupling constant) comes from the Particle Data Group. The figures in parentheses after the values give the 1-standard-deviation uncertainties
in the last digits; the corresponding fractional uncertainties in parts per 10
9
(ppb) are given in the last column. This set of constants (aside
from the last group) is recommended for international use by CODATA (the Committee on Data for Science and Technology). The full 2006
CODATA set of constants may be found at
Quantity
Symbol, equation
Value
Uncertainty (ppb)
299 792 458 m s

1
exact

speed of light in vacuum
c
6.626 068 96(33)
×
10

34
Js
Planck constant
h
50
1.054 571 628(53)
×
10

34
Js
≡ h/
2
π
Planck constant, reduced
50
= 6.582 118 99(16)
×
10

22
MeV s
25
1.602 176 487(40)
×
10

19
C = 4.803 204 27(12)
×
10

10
esu
electron charge magnitude
e
25, 25
conversion constant
c
197.326 9631(49) MeV fm
25
(
c
)
2
0.389 379 304(19) GeV
2
mbarn
conversion constant
50
0.510 998 910(13) MeV
/c
2
= 9.109 382 15(45)
10

31
kg
electron mass
m
e
×
25, 50
938.272 013(23) MeV
/c
2
= 1.672 621 637(83)
×
10

27
kg
proton mass
m
p
25, 50
= 1.007 276 466 77(10) u = 1836.152 672 47(80)
m
e
0.10, 0.43
1875.612 793(47) MeV
/c
2
deuteron mass
m
d
25
(mass
12
C atom)/12 = (1 g)/(
N
A
mol)
931.494 028(23) MeV
/c
2
= 1.660 538 782(83)
×
10

27
kg
unified atomic mass unit (u)
25, 50
8.854 187 817
... ×
10

12
Fm

1
0
=1

0
c
2
permittivity of free space
exact
4
π ×
10

7
NA

2
= 12.566 370 614
... ×
10

7
NA

2
permeability of free space
µ
0
exact
α
=
e
2
/4
π
0
c
7.297 352 5376(50)
×
10

3
=1
/
137
.
035 999 679(94)

fine-structure constant
0.68, 0.68
r
e
=
e
2
/
4
π
0
m
e
c
2
2.817 940 2894(58)
×
10

15
m
classical electron radius
2.1
(
e

Compton wavelength)/2
π
λ
e
=
/m
e
c
=
r
e
α

1
10

13
m
3.861 592 6459(53)
×
1.4
a

=4
π
0
2
/m
e
e
2
=
r
e
α

2
0.529 177 208 59(36)
×
10

10
m
Bohr radius (
m
nucleus
=

)
0.68
1.239 841 875(31)
×
10

6
m
wavelength of 1 eV/
c
particle
hc/
(1 eV)
25
hcR

=
m
e
e
4
/
2(4
π
0
)
2
2
=
m
e
c
2
α
2
/
2
Rydberg energy
13.605 691 93(34) eV
25
σ
T
=8
πr
e
/3
Thomson cross section
0.665 245 8558(27) barn
4.1
5.788 381 7555(79)
×
10

11
MeV T

1
Bohr magneton
µ
B
=
e
/
2
m
e
1.4
3.152 451 2326(45)
×
10

14
MeV T

1
nuclear magneton
µ
N
=
e
/
2
m
p
1.4
e
cycl
/B
=
e/m
e
1.758 820 150(44)
×
10
11
rad s

1
T

1
electron cyclotron freq./field
ω
25
p
cycl
/B
=
e/m
p
9.578 833 92(24)
×
10
7
rad s

1
T

1
proton cyclotron freq./field
ω
25
gravitational constant

6.674 28(67)
×
10

11
m
3
kg

1
s

2
1
.
0
×
10
5
G
N
10

39
c
(GeV
/c
2
)

2
10
5
= 6.708 81(67)
×
1
.
0
×
9.806 65 m s

2
standard gravitational accel.
g
n
exact
6.022 141 79(30)
×
10
23
mol

1
Avogadro constant
N
A
50
1.380 6504(24)
×
10

23
JK

1
Boltzmann constant
k
1700
10

5
eV K

1
= 8.617 343(15)
×
1700
22.413 996(39)
×
10

3
m
3
mol

1
molar volume, ideal gas at STP
N
A
k
(273.15 K)/(101 325 Pa)
1700
2.897 7685(51)
×
10

3
m K
Wien displacement law constant
b
=
λ
max
T
1700
σ
=
π
2
k
4
/
60
3
c
2
10

8
Wm

2
K

4
Stefan-Boltzmann constant
5.670 400(40)
×
7000
Fermi coupling constant
∗∗
c
)
3
10

5
GeV

2
G
F
/
(
1.166 37(1)
×
9000
sin
2
θ
(
M
Z
)(
MS
)
0.231 22(15)
††
6
.
5
×
10
5
weak-mixing angle
W
±
boson mass
80.403(29) GeV
/c
2
10
5
m
W
3
.
6
×
Z
0
boson mass
91.1876(21) GeV
/c
2
2
.
3
×
10
4
m
Z
1
.
7
×
10
7
strong coupling constant
α
s
(
m
Z
)
0.1176(20)
π
= 3.141 592 653 589 793 238
e = 2.718 281 828 459 045 235
γ
= 0.577 215 664 901 532 861
1G

10

4
T
1dyne

10

5
N
1erg

10

7
J
1eV=1
.
602 176 487(40)
×
10

19
J
1eV/
c
2
=1
.
782 661 758(44)
×
10

36
kg
2
.
997 924 58
×
10
9
esu = 1 C
kT
at 300 K = [38
.
681 685(68)]

1
eV
0

C

273
.
15 K
1 atmosphere

760 Torr

101 325 Pa

The meter is the length of the path traveled by light in vacuum during a time interval of 1/299 792 458 of a second.

At
Q
2
=0. At
Q
2
≈ m
2
W
the value is

1/128.

Absolute lab measurements of
G
N
have been made only on scales of about 1 cm to 1 m.
∗∗
See the discussion in Sec. 10, “Electroweak model and constraints on new physics.”
††
The corresponding sin
2
θ
for the effective angle is 0.23152(14).
1in

0
.
0254 m
1 A

0
.
1nm
1barn

10

28
m
2
[ Pobierz całość w formacie PDF ]